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The quantum superalgebra Uq[osp(l/2n)]: deformed 
para-Bose operators and root of unity representations 
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Department of Applied Mathematics and Computer Science, University of Ghent, Mjgslaan 
281-S9, B-9000 Gent. Belgium 

Received 20 January 1995 

Abstract. We recall the relation between the Lie superalgebra osp(l/Zn) and para-Base 
operators. ?be quantum superalgebra Uq[osp(l/2n)l, defined as usual in terms of its Chevalley 
generators, is shown to be isomorphic tu an associative algebra generated by so-called pre- 
oscillator operators satisfying a number of relations. From , k e  relations, and the analogue 
with the non-deformed ose, one can interpret these pre-oscillator operators as deformed para- 
Bose operators. Some consequences for Uq[osp(l/Zn)] (Cartan-Weyl basis, Poinca.??-Bir!&off- 
Witt basis) and its Hopf subalgebra U,[Sl(n)] an pointed our Finally, using a redimtion in 
terms of 'q-commuting' q-bosons, we consmct an irreducible finitedimensional unitary Fock 
representation of Uq[osp(l/2n)l and its decomposition in terms of Uq[gl(n)l representations 
when q is a root of unity. 

1. Introduction 

It has been established in a number of papers [l-S] that the proper mathematical framework 
of a system of n para-Bose operators is the theory of (unitarizable) representations of the 
Lie superalgebra osp(l/2n). This Lie superalgebra is B(O/n) in Kac's notation, and its 
finite-dimensional irreducible representations (irreps) are completely classified (even their 
characters are known). Unfortunately, these representations are not unitarizable (see, e.g., 
191). The infinite-dimensional unitarizable representations have not been classified, and 
so far only certain special cases (corresponding to parastatistics of order p )  have been 
considered. 

Following recent interest in q-deformations, a number of papers have dealt with 
deformed parastatistics and in particular with qdefonned para-Bose operators from different 
points of view [10-30]. The definition of q-deformed para-Bose operators is highly 
dependent upon the framework one is working in, and most often one is inspired by 
considering q-analogues of ordinary Bose operators. Such approaches usually lead to 
deformed para-Bose operators that are incompatible with a Hopf algebra structure. 

From our point of view, the natural ansatz is the equivalence between osp(l/2n) irreps 
and para-Bose operator representations. The q-deformed superalgebra Uq[osp(l/2n)], a 
Hopf superalgebra, is by now a classical concept 131-361. Inside Uq[osp(l/2n)] one can 
in a natural way identify a set of elements with q-deformed para-Bose operators. This 
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leads to two basic results: an alternative definition of UT[osp(l/2n)] in terms of non- 
Chevalley generators (the deformed para-Bose operators) satisfying a number of relations; 
and the q-analogue of all triple relations defining para-Bose statistics. These relations, in 
their tum, imply the existence of a Poincar6-Birkhoff-Witt theorem for U,[osp(l/h)] 
and thus a basis in term of normally ordered monomials of Caaan-Weyl generators, 
the expressions of which become extremely simple in terms of the deformed para-Bose 
operators. Apart from these consequences, we also state a number of results for the Hopf 
subalgebra U,[gl(n)] c UT[osp(l/2n)] and its realization in terms of the deformed para- 
Bose Operators. 

Just as the defining relations for ordinary para-Bose operators are automatically satisfied 
by canonical Bose operators (leading to the oscillator representation of osp(l/2n)), we 
construct in the present paper a set of deformed Bose operators that satisfy, as a particular 
example, the deformed para-Bose operator relations. These deformed Bose operators are 
(up to some factor) equal to the usual q-bosons, but different modes ‘q-commute’ instead of 
being commutative. The Fock space for these operators is constructed, and is shown to be 
unitarizable only if q is a primitive root of unity, in which case the representation becomes 
finitedimensional. These finite-dimensional representations are given explicitly, and their 
decomposition into irreducible representation of U,[gl(n)] is considered. 

T D Pulev and J Van der Jeugt 

2. The paraBose algebra pB,  and its relation to the Lie superalgebra osp(l/Zn) 

Let A: (i = 1, . . . , n) be a system of n para-Bose operators. The defining relation for 
para-Bose operators (parabosons), introduced in quantum field theory by Green 1371 as a 
possible generalization of integer spin field statistics (see [2] for a general introduction to 
parastatistics), is given by 

< e  c [{A,, Aj  1. Ail  = ( E  - V V j A i  + (6 - W i d :  (t, 7. E = hl). (2.1) 

The relations (2.1) generalize the canonical commutation relations of ordinary Bose operators 
(bosons) U’ 

(2.2) 

and it is trivial to verify that the U’ do indeed satisfy (2.1). 
The para-Bose algebra pEn is defined as the associative algebra with unity over C with 

generators A:, subject to the relations (2.1). In fact, pBn is turned into a superalgebra 
(associative &-graded algebra) by the requirement deg(Af) = i, Vi E (1,. . . , n}.  where 
Zz = [6, i). By defining the supercokutator between any two homogeneous elements U 

and b of pB. by 

[U;, ui’l = 6, [U;, U;] = tu:, ui’l = 0 

[U,  b]  =ab - (-1) de&) dedbjbu (2.3) 
and extending it by bilinearity to the whole algebra, pB. is turned into a Lie superalgebra. 
Thus n pairs of para-Bose operators generate a Lie superalgebra [38], and we shall recall 
that in the present case this Lie superalgebra can be identified with osp(l/2n) 111. 

For this purpose, define the Lie superalgebra osp(l/2n) (or B(O/n) in Kac’s 
notation [39]) as the set of (2n + 1) x (2n + 1) complex matrices of the form 

: )  
-xT f -dT 

(2.4) 
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where "I" stands for transposition, d ,  e and f are n x n matrices with eT = e and f = f ,  
and x. y are 1 x n matrices. The even subalgebra osp(l/2n)6 consists of all matrices with 
x = y = 0 and is isomorphic to the symplectic Lie algebra sp(2n). The odd  subsp pace 
osp(l/Zn)i consists of all matrices with d = e = f = 0. The supercommutator between 
homogeneous elements is defined by means of (2.3), and extended by bilinearity. Let EM 
denote the (2n + 1) x (2n + 1) matrix with 1 at the intersection of row k and column I ,  and 
zero elsewhere (where rows and columns are labelled from 0 to 2n). The Cartan subalgebra 
H of osp(l/2n) is spanned by the elements Hi = -Eii + ( i  = 1,. . . , n). With 
a suitable basis &i ( i  = 1, . . . , n )  of the dual space H*, the roots of osp(l/2n) consist of 
2n odd roots +&i and 2n2 even roots h i  f &j [39]. The Lie superalgebra osp(l/2n) has 
the usual root space decomposition, with all mot spaces onedimensional. The root vectors 
corresponding to the odd roots can be Written as follows: 

Ei : A; = JZ(E,,; - E ~ + . , ~ )  i = I,.  . . , n, (2.5) 

-&; : A: = J Z ( E ~ , ~ + .  + E ~ . ~ )  i = 1, . . . , n. (2.6) 
Therefore the anticommutator [A;', A,?'] is a root vector with root (E ;  + q q  (e, 7 = f), 
and one finds that [A; ,  A:] = -2& (i, j = 1, . . . , n). This implies that the odd root 
vectors A' generate the whole Lie superalgebra osp(l/2n). Moreover, one can verify that 
the elements (2.5)-(2.6) satisfy indeed (2.1). This gives r ise  to the following proposition. 

Proposition I. The para-Bose algebra pBn is isomorphic to the universal enveloping 
algebra U[osp(l/2n)J of osp(l/2n). The finite dimensional subspace 

(2.7) span[{A,, € 0  A j ] ,  Alii, j,k = 1,. . . , n; e; q ,  E = zk] 

endowed with the supercommutator (2.3), is a Lie superalgebra isomorphic to osp(l/2n). 

Note that the even elements of osp(l/2n) are spanned by the [A!,  A;}, thus sp(2n) = 

span[[Af, AJ]l i ,  j = 1 , .  . ., n; e,  q = f]. In particular, from (2.1) one can derive a 
compact expression for the commutation relations of the sp(2n) basis elements: 

[ I A f ,  A;], {Ai. Aril = (E - ~)6j!JAi.  A, I + (e - e)SidAJ. AID1 5 v  

+(a - q)6jlIAf, Ail  + (V - W i f { A J ,  G I .  (2.8) 
As a consequence of proposition 1, determining all representations of the para- 

Bose operators is completely equivalent with finding all representations of the Lie 
superalgebra osp(lj2n). For finitedimensional irreducible repkentations of osp(l/2n), 
there exists a character formula [39], but explicit formulae for the matrix elements are 
not available in the literature. In para-Bose statistics, one is rather interested in infinite 
dimensional unitarizable representations. The Fock space corresponding to the ordinary 
Bose operators (2.2) provides one such example; representations corresponding to a fixed 
order of parastatistics [37,40] provide in principle others; but apm from that no general 
theory of unitarizable representations of osp(l/2n) exists. 

Besides the definition of U[osp(l/2n)] in terms~of generators A: subject to the 
relations (2.1), there is an altemative definition in terms of Chevalley generators. This 
is perhaps the definition that most readers are more familiar with. Let (aij) be a Cartan 
matrix chosen as an n x n symmetric matrix with 

an. = 1 
i = 1, . . . , n - 1 

@ij = 2 ' oli.i+, = o l i + , , i  = -1  

all other aij = 0. 
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Again U[osp(l/2n)] is defined as an associative superalgebra in terms of a number of 
generators subject to relations. The generators are the elements hi, ei, fi (i = 1, . . . , n); the 
relations are the Cartan-Kac relations 

T D Palev and J Van der Jeugt 

(2.10) 

the e-Serre relations 

lei, ejl = 0 for Ji - j l  > 1 
- 2e;ei+lei + ei+le: = 0 

e:ei-l -2eiei-lei + ei-le: = 0 
i = 1,. . . , n - 1 
i = 2, .. . , n - 1 

(2.11) 

+, - I -  (e,&e, +e,e,-le,) 2 + e,-le; = 0 

and the fSerre  relations obtained from (2.11) by replacing everywhere e; by fi. The grading 
on the superalgebra is induced from the grading on its generators: deg(en) = deg(fJ = i 
and deg(ei) = deg(fi) = 8 for i = 1,. . . , n - 1. Although the present definition of 
U[osp(l/2n)] looks somewhat more complicated than the one given in terms of the para- 
Bose operators A', it cannot be avoided when turning to a Hopf superalgebra deformation 
Uq[usp(l/2n)]. Such deformations are well defined only in a Chevalley basis. In fact, 
relations like the ones given below, expressing the para-Bose operators in terms of the 
Chevalley generators, will be reconsidered in the following section to yield a definition 
of deformed para-Bose operators in terms of the Chevalley generators of Uq[usp(l/2n)]. 
Here, the relations read 

A; = -&rei, [ei+l; [ei+2, I.. . , [en-;, [en-l, e.]. . .I 
A: =&I.. -CL, fn-,lq, ~ 2 1 , .  ..I. j+21, f i + ~  f i ~  

i = 1,. . . ,n - 1 

i = 1,. . . ,n - 1 (2.12) 

A; = - d i e .  A,' = &fa. 

Clearly, the expressions of the Chevalley generators in terms of para-Bose operators also 
exist: 

(2.13) 

(2.14) 

e 1 - 2  - L(A;, A,+,] + 
hi = '(A7 r + l ,  A:,] -(A;, A:} 

f ' - 2  - '{A+,A;,} i = 1, .. .,n - 1 

i = 1, .  .. , n - 1 

(2.15) 

An important statement can be deduced fiom these relations. From equations (2.10)42.11) 
it follows that the enveloping algebra of gE(n) is generated by hi (i = 1, . . . , n) and et, fi 
(i = 1, . . . , n - 1). Then (2.13)-(2.14) and (2.8) show that U[gl(n)], a subalgebra of 
U[usp(l/2n)l, is generated by the elements (A;, AT} (i, j = 1,. . . , n). In other words 

(2.16) 

endowed with the usual commutator product. Replacing in (2.16) the para-Bose operators 
with the ordinary Bose operators (2.2) yields the familiar Schwinger realization of gl(n); 
but observe that in the superalgebra grading the para-Bose and Bose operators are odd 
('fermionic') operators rather than even ('bosonic') operators. 

gI(n) = span[{A;, AT)li, j = 1 , .  . . , n) 
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3. The quantum superalgebra U,[osp(l/Zn)] and q-deformed para-Bose operatom 

In this section we consider the well known quantum superalgebra U9[osp(l/2n)]. A general 
procedure to consmct a so-called Cartan-Weyl basis of U9[osp(l/2n)] (the analogue of a 
Cartan-Weyl basis for the Lie superalgebra osp(l/Zn)) was given in [35]. We follow 
this procedure, and identify-as in the non-deformed case of section 1-the Cartan- 
Weyl basis elements corresponding to the odd roots as 'deformed para-Bose operators.' 
The remaining questions that are treated in this section are: the alternative definition of 
Uq[osp(l/2n)] in terms of deformed para-Bose operators; the triple relations between 
deformed para-Bose operators (the analogue of (2.1)); a Poincar6Birkhoff-Witt (PBW) 
theorem for U9[osp(l/2n)l; the Cartan-Weyl basis of the subalgebra U,[gl(n)] and its 
consequences. 

First, we introduce U, E Uq[osp(l/2n)] by means of its classical definition in terms 
of the Cartan matrix (2.9). U, is the associative superalgebra with unity over @, generated 
by the elements k f  = q**,, et, fi (i = 1,. . . , n), subject to the following relations: the 
Cartan-Kac relations 

kik,:' = k,T'kj = 1 
kiej = q'"ejki 

[ei, 61 = Sij(ki - k;')/(q - q-') 

kikj = kjkj 

(3.1) 
k i f i  = q-mUfiki 

except for i = j = n 
{en, fnl = (kn - k;')/(q - q-') 

the eSerre relations 

[ej, ej]  = 0 for li - j l  > 1 
- (4 + q-')ejej+lei + ei+le? = o 
- (q + q-')eiei-lej + ei-le? = 0 

i = 1..  . . , n - 1 
i = 2.. . . , n - 1 (3.2) 

e;e,-l+ (1 - q - q-l)(e,e,-le, 2 + e,e.-te,) 2 + e.-le: = 0 

and the faer re  relations obtained from above by replacing ej by fi everywhere. The 
gading on U, is induced from the requirement that the generators e,, fn are odd and all 
other generators are even. It is known that U, can be endowed with a comultiplication A, 
a~counit E. and an antipode S, turning it into a Hopf superalgebra; here we shall not be 
concerned with this additional structure. 

Following the procedure outlined in [35] one determines the Cartan-Weyl elements 
corresponding to the odd roots, and thus we define the deformed para-Bose operators as 
follows (see also 1411): 

A; = - f i [ e j ,  rei+], Iei+2, [. . . , [e,-z, te,-i, enl,-~lq-i . .:],-I 
A: = AI.. . [fn, fa-114, fn-zlq,. . .I,. fi+&, fi+ilq, f i lq  i = 1, . . . , n - 1 (3.3) 

A; =~-JZe, A,+ = Jzf. 

Li = kiki+l. . . k, = 4'' 

where [U, U], = uu - qvu. Besides these, we also introduce n even 'Cartan' elements 

where Hi = hi + hi+l+ . . . + h. i = 1, . . . , n. (3.4) 

We shall call the set of operators A', Li pre-oscillator operators, for reasons that will be 
obvious in the following section. Using their definition (3.3)-(3.4) and the defining relations 
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(3.1)-(3.2), one can also determine the Chevalley generators in terms of the preoscillator 
operators (i # n) 

T D Palev and J Van der Jeug! 

Now, one can determine the relations between the preoscillator operators. A set of 
such relations were already obtained in 1411, but with the purpose of giving an alternative 
definition of Uq[osp(l/2n)] in terms of deformed para-Bose or preoscillator operators it . 
would be interesting to find the direct analogue of (3.1)-(3.2), and thus present a minimal 
set of relations. This is given in the following proposition. 

Proposition 2. The relations of Up[osp(l/2n)] in terms of i& Chevalley generators hold if 
and only if the pre-oscillator operators satisfy ( i ,  j = 1, . . . , n, 6 = -I) 

LiL;' = L;'Li = 1 LiLj = LjLi 
= qT6jJAjlLi 

{A; ,  AT] = -2(Li - L;')/(q - q-') (3.6) 
[{A; f t  , Ai+1),  A,~t19s;; = -2Vj.i.t1Lj +t Ai -I 

[ [A i - , ,  A i ) ,  A:& = 0. 

We shall refer to (3.6) as the pre-oscillator realization of U,. Although the definition 
of U,[osp(l/Zn)] in terms of deformed para-Bose operators is more complicated than in 
the non-deformed case, where only one relation (2.1) was necessary, it should be observed 
that the present definition by means of (3.6) is certainly not more involved than the list of 
classical relations, i.e. the Cartan-Kac, the e-Sene and the f-Serre relations. The remaining 
advantage of the definition by means of Chevalley generators is the simplicity of the other 
Hopf superalgebra functions A ,  E and S which become very complicated expressions on 
A: and L:', although they are certainly welldefined. 

Next, we are concerned with deriving the analogue of (2.1), i.e. all triple relations 
between deformed para-Bose operators. These relations are derived using (3.6), and they are 
far more complicated than the classical relation (2.1). In fact, it would be quite impossible 
to cast all of them in a single expression. Nevertheless, we think they are of importance 
since they constitute the direct Hopf algebra qdeformation of pari-Bose statistics. In the 
following list, we use the abbreviation: 

(3.7) 

Then, this list reads: 

(3.8) [ [ A ;  f t  , A j } .  AfIqrjjfjk = Z@;kA~L~rci - (q -q- ' )r ikj{Aft ,  A i )A j  (i # j )  
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[{AI, AI], A i n ]  = 26,,,(q" - 1){Af, A;']Af 

- 2 5 ~ ( 1  ++q)&rAf ((4' - IW;' + (1 - q-')Li) / (q  - 4 - l )  (3.10) 

(3.11) 

Apart from giving the q-analogue of para-Bose relations, (3.8)-(3.11) also imply that 
monomials in A: and [Ai ,  A:] can be reordered. A detailed investigation of the quadruple 
relations, i.e. the relations between {Af,  A;] and (Ai, A i }  (which shall not be given here, 
since the complete list is too long), yields the following proposition. 

Proposition 3. The set of operators 

L", A:, {A;,AT], { A i , A f }  i # j , i , j , k , E = l ,  ..., n , f = &  (3.12) 

give a Cartan-Weyl basis of U,[osp(l /2n)] .  The Set of all normally ordered monomials [35] 
in (3.12) constitute a basis in Uq[osp(l /2n)]  (PBW theorem). 

[{Ai, F Ai}. t ,  A ~ I p + y ~  c = 0. 
~~ 

This shows one of the important advantages of the deformed para-Bose operators: they 
yield a very simple basis for U,[osp(l/Zn)].  At the same time we can resfxict the above 
statements to the subalgebra U,[gE(n)]: 

Proposition 4. The operators 

LF' {Af,AT] i # j = 1 ,  ..., n (3.13) 

constitute a Cartan-Weyl basis for the Hopf superalgebra Uq[gl(n)];  the normally ordered 
monomials in (3.13) form a basis in U.[gl(n)]. 

Let us say a few words about the normal order for the elements (3.12). Usually, one 
takes an order < such that for positive root vectors ( p r v )  A;, (A;, AT] (i < j ) ,  for negative 
root vectors (nrv), and for the Cartan generators Li the inequality pru c nrv c Li holds. 
Among the p r v  the order is taken to be [41] 

{A;, Ai} c {A;, A;} for k c 1 (3.14) 

[A;, A:] c A; < {A;, A;] c {A;. A:] c A; c {A;. A;] 

f o r i c j ;  i < k , l ;  j c r , s .  (3.15) 

To prove proposition 3 one has to show that the unordered product of any two Cartan-Weyl 
elements (3.12) can be represented as a linear combination of normally ordered products, 
and that this procedure of ordering is finite when applied to a finite unordered monomial in 
the cartan-Weyl elements. As we mentioned previously, this can be deduced from the triple 
relations (3.8)-(3.11), and from a list of quadruple relations which is too long to be included 
here. When restricting the elements to (3.13), it tu& out that the quadruple relations can 
also be summarized rather easily, thus yielding a complete proof of propOSition 4. 

For this purpose, introduce the function 

1 

0 otherwise. 

if il > iz > ... > ik 
,.... ib = (3.16) 

A set of Cartan-Weyl elements of U,[gl(n)] has been considered before [42], and consists 
of n 'Cartan' elements LI,  Lz, . . . , L, and n(n - 1) root vectors eij, i # j = 1,. . . , n. 
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Remember that eii is positive if i < j and negative if i > j .  Among the prv ,  the normal 
order induced from (3.14X3.15) yields 

(3.17) 

for nrv one takes the same rule (3.171, and one chooses p r v  < nru < Li. This yields a 
normal order for the Uq[gI(n)] Cartan-Weyl basis elements. A complete set of relations is 
given by: 

(1) LfLy  = L;Lf Liejk = q6ti-6;ke. jk L .  I (3.18) 

(2) For any eij > 0 and ekl < 0 

[eij, ekll = ( (4  - q-')@jkirekjeii - aiiejkekj + &@ireit) L~L:' 

T D PaIev and J Van der Jeugt 

eij < ekl if i < k or i = k and j < I 

+L~L;' (-(4 - q-')@kjiieilekj - silekjekj + sjketieil) 

+SilGjk(LiL,7' - L;'Lj)/(q - 4 - 9  (3.19) 

(3) Set = 1 if 0 < eij < ekl, and $ = -1 if 0 > eij > ekl. Then 

eijeu - qE(6~~-6jl-6i~+sjl)e~elj = Sjkeii + (q - q-')Gjkiekjeil. (3.20) 

To obtain the above relations we have considered equations (3.10)-(3.14) from I421 
only for the even generators, first replacing q by -q and then 4"' by Li.  The link with the 
present operators is now given by 

eij = - i L - ' ( A f ,  2 1  A;] fo r i  < j and eij = -4{A;, AT]& for i  > j .  (3.21) 

It is tedious but straightforward to verify that expressions (3.21) indeed satisfy the relations 
(3.18)-(3.20). 

To conclude this section, observe that for Uq[osp(l/2n)] ( Uq[gl(n)]), the expressions 
of the Cartan-Weyl root vectors in terms of the deformed para-Bose operators are the 
same as the expressions of the Cartan-Weyl basis elements in terms of the non-deformed 
para-Bose operators for osp(l/2n) (gZ(n)). 

4. Realization of Up[osp(l/2n)] in terms of deformed Bose oscillators 

We have seen that the canonical Bose operators (2.2) satisfy the para-Bose relations (2.1). 
As a consequence the Fock space built on the Bose operators forms a representation of the 
para-Bose algebra pB,  U[osp(l/2n)], usually referred to as the oscillator representation 
of osp( 1/2n). In this section we shall define a new set of operators which can be interpreted 
as deformed Bose operators. They satisfy the deformed para-Bose relations (3.6) and 
hence their Fock space forms a representation of Uq[osp(l/2n)], the analogue of the 
usual oscillator representation. Surprisingly, the unitarity conditions lead to the condition 
that q should be a root of unity, yielding a finite-dimensional Fock space. This Fock 
representation is studied in detail, and in particular its decomposition with respect to 
Uq[gI(n)] is considered, giving rise to certain root of unity representations for this quantum 
algebra. 

Define a set of operators 

a: K i=qN;  i = 1 ,  ..., n (4.1) 



Quantum superalgebra U,[osp(IRn}] 2613 

satisfying the relations 

(4.2) = p j  aj f ~i 
' j  

ala? = qsna,?a/ for all i -= j .  ' I  

It is~obvious that in the limit q -+ 1 the operators a: reduce to the usual Bose creation 
and annihilation operators (2.2). For a fixed i the relations coincide (up to a multiple) with 
the usual so-called q-deformed oscillators [43-46]. Note, however, that the third relation 
in (4.2) implies that different modes do not commute, but 'q-commute'; s d a  phenomenon' 
has also been considered before [47-511. 

Denote by W,(n) the associative algebra with unity over C with generators a:, K? 

(i = 1,. . . , n) and relations (4.2). Clearly, W&) is a deformation of the canonical Weyl 
algebra W(n) ,  generated by n pairs of Bose operators. 

Proposition 5. The linear map rp from U,[osp(l/Zn)] into W,(n), defined on the pre-oscil- 
lator generators as 

v(A') = a i  q ( ~ ~ ) = q -  'I2 K~ -'E-. , i = l ,  ..., n (4.3) 

and extended on all elements by associativity is a (associative algebra) homomorphism of 
Uq[osp(l/2n)l onto W,(n). 

The proof follows from the observation that the operators a i  and 1; = q-112K;1 satisfy 
equations (3.6). Moreover the generators of W,(n) are among the images of (0. In particular 

= rp(q-'lzL;'). From propositions 3 and 5 it follows that the following elements yield 
an oscillator realization of the Cartan-Weyl generators of U , [ o s p ( l / k ) ]  

I?' a i  {a;,aj+} {a j .a j ]  t 1 i # j = l ,  ..., n. (4.4) 
Deformed Bose creation and annihilation operators have recently been studied [43-4.5] and 
in the past [56-591. The operators (4.2) introduced here coincide with others only in one 
mode. The main reason for introducing them lies in the underlying connection with the 
deformed para-Bose operators (3.6). As an important consequence, we shall see that unitary 
deformed oscillator representations exist only when q is a root of unity. 

A representation of U,[osp(l/Zn)] is said to be unitary if the representation space is a 
Hilbert space and the representatives of A' and Lf' (where Li' = qiHi are supposed to 
be diagonal) satisfy 

(A')t = A; (Hj)t  = Hi (4.5) 
where At  is the Hermitian conjugate to the operator A. In particular, let us now consider the 
Fock space defined by means of the deformed oscillators (4.2). Requiring (4.5) herein leads 
to (a')t =a;, (Ni) t  = Ni. But the relations (4.2) remain invariant under this conjugation 
if and only if 141 = 1, i.e. if q is a phase. 

Next. we proceed with the construction of the Fock space. As usual, the vacuum vector 
10) is defined by means of 

a;10) = 0. (4.6) 

(4.7) 
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where N,,, ....,, is a normalization constant. 
calculation using (4.2) and (4.6) leads to 
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Under the unitarity condition, a simple 

(ml, ... , mnlml,.  . . mn) = IN,, . . . . . ~ . I 2 ~ ( m l ) . . . ~ ( ~ " )  (4.8) 
where 

(q l / z  + q-1/2)m 

2,[m],! 
a ( m )  = (4.9) 

and, as usual, [ X I ,  = (qz-q-x) / (q-q- l )  and [XI,! = [x],[x- 11, . ' . [l],. For all allowed 
values of the labels mi, the norm (4.8) should be positive. In particular, this implies that 
a(mi) must be positive for all mi = 0,1, .  . . . Then (4.9) implies that [m], should be 
positive for m = 0,1, . . . . But since q = ei+ is a pure phase, [m], = sin(m4)/sin(g). It 
follows that the only admissible situation is when q is a primitive root of unity, 

= (4.10) 
for some positive integer k. In that case, the Fock space is finite dimensional, with 

m i E { O , l ,  ..., k-11 i = l ,  ..., n. (4.11) 
Thus, the total dimension of the Fock space is k". When the basis is taken to be orthonormal, 
i.e. 

(4.12) Nm, ..... m. = ( d m  1) . . .a (ma)) -'I2 
the explicit action of the deformed oscillators, using the shorthand notation 

Im) = I .. . .mi-1, mi, mi+1,. . .) 

[mi - 1) = I.. .) mi-1, mi - 1,mi+*, . . .) 

~ i l m )  = e'"'"+x) 

[mi + 1) = I.. . , mt-1, mi + 1, mi+1,. . .) (4.13) 

reads 

(4.14) 

It is also interesting to consider the decomposition of the above Fock space 
representation, irreducible with respect to U,[osp( 1/2n)], according to the quantum 
subalgebra U,[gl(n)]. From (3.21) we can in fact directly deduce the representatives x(eij) 
of all Cartan-Weyl generators of U,[gZ(n)] in the Fock space: 

n(eij) = - cos(z/(2k))Kjaj+a; for i < j (4.15) 

n(eij) = - cos(n/(2k))aj+at:K;' for i z j .  (4.16) 
Then, the actual matrix elements follow from (4.14). Note that the subspace spanned by 
vectors Iml, . . . , m,) with ml + . . . + m, = m (m constant) in fact forms a submodule 
for the U,[gl(n)] action. Since the matrix elements (4.14) of (a:) are non-zero for 
mi # 0 (mi # k), one deduces that this U,[gl(n)] module is also irreducible. Thus, the k"- 
dimensional irreducible U,[osp(l/2n)] Fock representation splits into nk-n+ 1 irreducible 
U,[gl(n)] representation (m) characterized by a 'total number' m taking values from 0 up 
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to n(& - 1). The dimension of this irreducible representation (m) is equal to the coefficient 
of xm in the expansion of 

or, more explicitly, 
n! 

‘ 1 . 1 .  ’ 
dim(m)= 

h,j ,,.,., jg-, J 0 . A .  . ‘ J k - l !  

(4.17) 

(4.18) 

where the ji assume all non-negative integer values such that jo + j l  + . . . + j k - ,  = n and 
it + 2jz + . . + (k - 1)jk-I = m. Of course, the representations (m) obtained by means 
of deformed Bose operators are only a small part of the so-called type 1 representations of 
U,[gl(n)l (see, e.g., chapter 11 of [60], and references therein). 
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